首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181265篇
  免费   16352篇
  国内免费   9259篇
工业技术   206876篇
  2024年   306篇
  2023年   2421篇
  2022年   4106篇
  2021年   6511篇
  2020年   5018篇
  2019年   4252篇
  2018年   4669篇
  2017年   5328篇
  2016年   5025篇
  2015年   6995篇
  2014年   9218篇
  2013年   11122篇
  2012年   12585篇
  2011年   13591篇
  2010年   12515篇
  2009年   12023篇
  2008年   11841篇
  2007年   11525篇
  2006年   11273篇
  2005年   9413篇
  2004年   6684篇
  2003年   5668篇
  2002年   5274篇
  2001年   4623篇
  2000年   4251篇
  1999年   3932篇
  1998年   3164篇
  1997年   2537篇
  1996年   2287篇
  1995年   1928篇
  1994年   1577篇
  1993年   1161篇
  1992年   840篇
  1991年   692篇
  1990年   516篇
  1989年   470篇
  1988年   376篇
  1987年   221篇
  1986年   205篇
  1985年   122篇
  1984年   109篇
  1983年   84篇
  1982年   74篇
  1981年   69篇
  1980年   51篇
  1979年   40篇
  1977年   41篇
  1976年   19篇
  1975年   16篇
  1959年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Transparent aluminum oxynitride (AlON) ceramics have been prepared through aqueous gelcasting forming technique starting from the raw materials of single phase AlON powders. The powder was specially treated for anti‐hydrolysis in ethanol before the shaping technique. The surface‐treated AlON powders could then be dispersed in an aqueous‐organic solution to prepare stable slurries containing 35 vol% solids loading. The obtained stable slurries were subsequently casted, calcined, and pressureless sintered at 1950°C for 8 h in nitrogen atmosphere. High transparent AlON ceramics with an average grain size of 112 μm and the in‐line transmittance of 81% at wavelength 1100 nm have been obtained.  相似文献   
992.
Inspired by pressure resistance welding of metallic materials, herein we describe how two MAX phases—Ti3SiC2 and Ti3AlC2—were successfully joined by a rapid electric current heating method in a pulsed electric current sintering furnace. No welding agent was employed and the total processing time was less than 6 min. When the bulk temperature of the joint couple exceeded 1070°C, good joints, with shear strength above 50 MPa, were achieved in both homo‐ and heterojunction joints.  相似文献   
993.
An investigation on reaction scheme and kinetics for ethanol steam reforming on skeletal nickel catalysts is described. Catalytic activity of skeletal nickel catalyst for low‐temperature steam reforming has been studied in detail, and the reasons for its high reactivity for H2 production are attained by probe reactions. Higher activity of water gas shift reaction and methanation contributes to the low CO selectivity. Cu and Pt addition can promote WGSR and suppress methanation, and, thus, improve H2 production. A reaction scheme on skeletal nickel catalyst has been proposed through temperature programmed reaction spectroscopy experiments. An Eley‐Rideal model is put forward for kinetic studies, which contains three surface reactions: ethanol decomposition, water gas shift reaction, and methane steam reforming reaction. The kinetics was studied at 300–400°C using a randomized algorithms method and a least‐squares method to solve the differential equations and fit the experimental data; the goodness of fit obtained with this model is above 0.95. The activation energies for the ethanol decomposition, methane steam reforming, and water gas shift reaction are 187.7 kJ/mol, 138.5 kJ/mol and 52.8 kJ/mol, respectively. Thus, ethanol decomposition was determined to be the rate determining reaction of ethanol steam reforming on skeletal nickel catalysts. © 2013 American Institute of Chemical Engineers AIChE J 60: 635–644, 2014  相似文献   
994.
Traditionally, data‐based soft sensors are constructed upon the labeled historical dataset which contains equal numbers of input and output data samples. While it is easy to obtain input variables such as temperature, pressure, and flow rate in the chemical process, the output variables, which correspond to quality/key property variables, are much more difficult to obtain. Therefore, we may only have a small number of output data samples, and have much more input data samples. In this article, a mixture form of the semisupervised probabilistic principal component regression model is proposed for soft sensor application, which can efficiently incorporate the unlabeled data information from different operation modes. Compared to the total supervised method, both modeling efficiency and soft sensing performance are improved with the inclusion of additional unlabeled data samples. Two case studies are provided to evaluate the feasibility and efficiency of the new method. © 2013 American Institute of Chemical Engineers AIChE J 60: 533–545, 2014  相似文献   
995.
Eu2+‐doped zinc fluoro‐phosphate Zn2[PO4]F was synthesized by the conventional high‐temperature solid‐state reaction. The phase formation was confirmed by X‐ray powder diffraction measurements and the structure refinement. The photoluminescence excitation and emission spectra, and the decay curves were measured. The natures of the Eu2+ emission in inorganic hosts, e.g., the emission and excitation properties, the chromaticity coordinates, the Stokes shifts, the absolute quantum efficiency, and the luminescence thermal stability were reported. Under the excitation of near‐UV light, Eu2+‐doped Zn2[PO4]F presents a narrow blue‐emitting band centered at 423 nm. The thermal stability of the blue luminescence was evaluated by the luminescence intensities as a function of temperature. The phosphor shows an excellent thermal stability on temperature quenching effects.  相似文献   
996.
The present study describes the successful synthesis of a Ca2+‐doped LaCrO3 ceramic with high infrared (IR) emissivity, which is important for high‐temperature applications for significant energy saving. It is demonstrated that 20 mol% Ca2+‐doped LaCrO3, i.e., La0.8Ca0.2CrO3, exhibited an IR emissivity as high as 0.95 in the spectral region of 3–5 μm, which was 33.8% higher than that of LaCrO3. By using La0.8Ca0.2CrO3 as IR radiation agent in surface coating of heating unit, the radiative heat transfer could be enhanced significantly. The mechanism of the high IR emissivity of La0.8Ca0.2CrO3 was attributed to the following aspects: Ca2+ doping introduced an impurity energy level of Cr4+ into LaCrO3 and increased the hole carrier concentration, enhancing both impurity absorption and hole carrier absorption in the IR region; moreover, the doping caused lattice distortion enhanced the lattice vibration absorption. This novel high IR emissivity ceramic shows a promising future in high‐temperature applications for the purpose of energy‐saving.  相似文献   
997.
Sr2FeMoO6 ceramics with different Fe/Mo antisite defect (ASD) concentrations and grain‐boundary (GB) properties were prepared. The competitive and combining effects of GB and Fe/Mo ASD on the transport and magnetoresistance were discussed. The GB properties, that is, intergrain coupling strength, positively related with resistivity value, is extremely sensitive to the total flux of reducing gas, in general, lower total gas flux leads to larger resistivity, thus stronger intergrain coupling strength, and then the contributions of GB effect to low‐field magnetoresistance (LFMR) increase appreciably regardless of the amount of ASD. In detail, when ASD concentration is less than 26%, LFMR is dominantly controlled by the GB effect. However, the suppressed ASD effect on LFMR behavior comes to play when the ASD content is larger than or equal to 26%, where the GB and ASD effects contribute together to the LFMR.  相似文献   
998.
Typoselectivity of crude CBD-T1 lipase (Geobacillus sp. T1 lipase fused with a cellulose binding domain) was investigated. Multi-competitive reaction mixtures including a set of n-chain fatty acids (C8:0, C10:0, C12:0, C14:0, C18:1 n-9, C18:2 n-6 and C18:3 n-3) and tripalmitin-enriched triacylglycerols were studied in hexane. The crude CBD-T1 lipase discriminated strongly against C18:1 n-9 [competitive factor (α) = 0.23] and showed the highest preference for C8:0 (α = 1). Utilizing the catalytic properties of crude CBD-T1 lipase, acidolysis of soybean oil with C8:0 was selected as a model reaction to investigate the ability of the lipase to produce MLM-type (medium-long-medium) structured lipids. Several reaction parameters (added water amount, reaction temperature, substrate molar ratio and reaction time) examined for incorporating C8:0 into soybean oil, the optimum conditions were: 1:3 (soybean oil/C8:0) of molar ratio, 3 mL of hexane, 50 °C of temperature, 48 h of reaction time, 20 % of crude CBD-T1 lipase (w/w total substrates), and 7.5 % of water (w/w enzyme). Under these conditions, the incorporation of C8:0 was 29.6 mol%. The results suggest that crude CBD-T1 lipase, which showed different fatty acid specificity profiles, is a potential biocatalyst for the modification of fats and oils.  相似文献   
999.
Bismuth ferrite nano‐ and microcrystals were prepared by a facile molten salt technique in two kinds of molten‐salt‐based systems (NaCl–KCl and NaCl–Na2SO4). In the NaCl–KCl salt system, a systematic study indicating the effects of process parameters (e.g., calcination temperature, holding time as well as the molten salt ratios) on the bismuth ferrite formation mechanism and structural characteristics is reported. The results show that almost pure phase BiFeO3 powders with minimum impurity phase of Bi2Fe4O9 were synthesized at temperatures of 700°C–800°C, whereas high calcination temperature (e.g., 900°C) resulted in the formation of almost pure phase Bi2Fe4O9 powders. The prolonged holding time increased the particle size via the Ostwald ripening mechanism; however, there was little effect on the particle morphology. Similar phenomenon occurred as increasing the molten salt ratios. In the NaCl–Na2SO4 salt systems, it is found that low NP‐9 (nonylphenyl ether, NP‐9) surfactant content (0–5 mL) led to the formation of almost pure phase BiFeO3 powders, whereas high NP‐9 surfactant content (e.g., 20 mL) resulted in pure phase Bi2Fe4O9 powders. The average particle size of the BiFeO3 powders was decreased as increasing the NP‐9 surfactant content, whereas their morphologies did not change significantly. Because of the simplicity and versatility of the approach used, it is expected that this methodology can be generalized to the large‐scale preparation of other important transitional metal oxides with controllable sizes and shapes.  相似文献   
1000.
A series of phosphors Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ have been prepared by a hightemperature solid‐state reaction using boric acid as flux. These oxyfluorides crystallize in cubic structure, space group. Under the near ultraviolet excitation within wavelength range 310–390 nm, Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ phosphors exhibit an intense emission covering a broad band of 370–500 nm derived from the 5d→4f transitions of Ce3+ and a characteristic emission at 544 nm of Tb3+. The emission can be tuned from blue to green by altering the relative ratio of Ce3+ to Tb3+ in the composition. The energy‐transfer mechanism from Ce3+ to Tb3+ is investigated based on the site occupancy of the luminescence center in the crystal structure of the Ca12Al14O32F2 host. More importantly, when a certain amount of boric acid is added as flux in the synthesis, the fluorescence intensity of the phosphors increases about 65%. Because of its broad excitation and efficiently tunable blue to green luminescence, the Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ phosphors may find promising application as a near UV‐convertible phosphor for white‐light‐emitting diodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号